[WISH Science Workshop @ 国立天文台三鷹 2009/04/08]

期待される LBG・LAE 検出数 : 準解析的モデルからの見積り

小林正和

国立天文台 光赤外研究部 学振特別研究員(PD)

MARK, Totani, & Nagashima (2007, 2009)

O ベース=準解析銀河形成モデル(三鷹モデル Nagashima & Yoshii 04)

- 近傍銀河の観測量を再現
- ・任意の z の銀河の物理量(星形成史、金属量、星・ガス質量など)を計算

O + 最新の種族合成モデル(Schaerer 03)

- ・低金属量星の進化トラックの最新モデル
- ・各銀河の星形成史、金属量など(三鷹モデルから)
 - → UV 連続光、HI 電離光子放射数(intrinsic Ly α 輝線光度)などを計算

$O + Ly \alpha$ 離脱率の現象論的モデル

- ・Lyα 輻射輸送の理論計算・近傍銀河の観測からの示唆を考慮
- ・各銀河の UV 連続光、intrinsic Ly α 輝線光度
 - → 観測される Ly α 輝線光度、Ly α 等価幅を計算

z>6LBG UV 光度関数

z > 6 LBG Number Count

	宇宙年齢	z=7から無進化	z>7で減少	DM進化
z=7-8 (z-drop)	6-7億年	220,000	Ļ	54,000
z=8-11 (J-drop)	4-5 億年	180,000	26,000	1,100
z=11-14 (H-drop)	3-4億年	68,000	6,336	0

← 岩田さんの評価
 (山田さん、岩田さん講演)

 $z > 6 LAE Ly \alpha$ 光度関数

O 100 deg² を 27 mag まで掃けば・・・

LBG:~160,000 個(z~7-8)、~60,000 個(z~8-11)、 ~1,000 個(z~11-14)

~まとめ~

- LAE:~4,000 個(z~8)、~700 個(z~10)、
 - ~80 個(z ~ 12) ↑ Ly α の IGM 吸収が z=5.7 と同じ場合
- O IMF、ダスト減光曲線の不定性もあるが、これらによってこの評価より少なくなることは多分ない
- O LAE @ z > 8 の実際の検出数がこれより少なければ、 再電離の効果と考えられる

Observational Data of LAEs (1)

LAE luminosity functions (LFs): Lya LF & UV LF

(1) UV LF: almost no-evolution @ z = 3-7 or somewhat brighter at higher-z

(2) Lya LF: no-evolution @ z < 6, decrease @ z > 6
 → Lya extinction in IGM (= cosmic reionization)?

Important information about LAEs is imprinted in these obs. LFs

Observational Data of LAEs (2) Lya Equivalent Width (EW) Distribution

some LAEs @ z = 3-6 have EW(Lya) > 240 A → include Pop III stars and/or top-heavy IMF?

Distribution in M(UV)-EW(Lya) plane

deficiency of UV-bright LAE w/ large-EW

Physical properties of LAEs@high-z

stacking broad-band fluxes (Gawiser+'06)

- high SFR
- young (10-100 Myr)
- almost dust-free
- low stellar mass

Theoretical Works & fesc

Several models with different approaches exist

- analytic: e.g., Haiman & Spaans '99, Dijkstra+ '07
- semi-analytic: Le Delliou+ '05 & '06, Orsi+ '08
- SPH: e.g., Barton+ '04, Nagamine+ '08

* in all model, Lya escape fraction f_{esc}^{Lya} is oversimplified $f_{esc}^{Lya} = const \text{ or } exp(-tau_d) \leftarrow tau_d$: dust opacity for continuum

Implications for f^{Lya}_{esc} from theories of Lya transfer

Implications for f^{Lya}_{esc} from Observations (2)

- gas-dynamics (outflow)
 (Kunth+ '98)
 (Kunth+ '98)
 - consistent with theoretical expectation
 - ➔ galactic-scale outflow drastically reduce the effective opacity of Lya (Hansen & Oh '05)

interstellar dust extinction & outflow effect should be incorporated into f_{esc}^{Lya} *model*

Base of Our Theoretical Model

semi-analytic model of hierarchical galaxy formation

 reproduce most of the obs. properties of local galaxies (Nagashima & Yoshii '04; Nagashima+ '05), and UVLFs & ACFs of LBGs @ z=4, 5 (Kashikawa+ '06)

Extension of the Mitaka Model for LAE ◆ SFR in starburst galaxies SFR(t) $\psi(t) = \frac{M_{\text{cold}}^{0}}{\tau_{\text{burst}}} \exp\left[-\frac{t}{\tau_{\text{burst}}}\right] \quad \tau_{\text{burst}} = f_{\text{dyn}}\tau_{\text{dyn}}$ $M_{\star} < M_{cold}^{o}$: supernova (SN) feedback $M_{\star} = f_{\star} M_{\text{cold}}^0 \qquad f_{\star} = f_{\star} \left(V_{\text{c}} \right)$ determined by the Mitaka model to reproduce the local LFs Ω wind

galactic wind blows and SF is terminated: similar to the traditional picture of galactic wind (Arimoto & Yoshii '87)

How to Calculate L(Lya)

Lya line luminosity emitted from each galaxy L^{emit}_{Lva}

 $L_{Ly\alpha}^{emit} = L_{Ly\alpha}^{max} 1 - \int_{esc}^{Lyc} \int_{esc}^{Ly\alpha} escape fraction of Lyman cont.$ $\Rightarrow f_{esc}^{LyC} = 0 \text{ (fiducial)}$ escape fraction of Lyathe maximum possible Lya line luminosity: $L_{Lya} \text{ in the case of } f_{esc}^{LyC} = 0 \text{ (ionization equilibrium (case B)}$

← determined by using SFR, metallicity, age & SSPs of Schaerer (2003)

observed Lya line luminosity L^{obs}_{Lya}

 $L_{Ly\alpha}^{obs} = L_{Ly\alpha}^{emit} T_{Ly\alpha}^{IGM}$ IGM transmission to Lya emission $\rightarrow T_{Lya}^{IGM} = 1$ (fiducial)

Our Model for fLya esc

 simply proportional model (e.g., Le Delliou+ 'o6): constant f^{Lya}_{esc} regardless physical properties of each galaxy

the outflow + dust model:

including interstellar dust extinction (next slide)
& galaxy-scale outflow induced as supernova feedback

Resultant Lya Escape Fraction

Comparison with LAE UV LF @ z<6

Comparison with LAE EW dist. @ z < 6

Comparison in M(UV)-EW(Lya) plane @ z < 6

Comparison in M(UV)-EW(Lya) plane @ z < 6

Characteristics in UV LF

Prediction to Redshift Evolution of Lya LF

Redshift Evolution of LAE UVLF

Nature of LAEs with EW > 240 A

Ly α とUV 連続光の dust opacity

- O $\tau_{Ly\alpha}$: Ly α line に対する dust opacity ← Ly α 光度関数とのフィットで決めた
- O τ_c : Ly α 波長付近の連続光に対する dust opacity ← 近傍銀河の観測量とのフィットで決めた(三鷹モデル)
 - → $\tau_{Ly\alpha} / \tau_c \equiv q$: geometry parameter (Finkelstein+ 08) $\tau_{Ly\alpha} = q \tau_c$

- q >> 1: homogeneous ISM
- q << 1: clumpy interstellar dust

geometry parameter q \geq EW(Ly α)

Model Prediction

Cosmic Reionization

Gunn-Peterson test (Gunn & Peterson 1968)

Bill Keel's website : http://www.astr.ua.edu/keel/agn/

Cosmic Reionization

Lya emission from LAE is attenuated in IGM where IGM neutral fraction (x_{HI}) > 0.1 (Santos '04)

Comparison with Lya LF: z > 6

LAE Statistical Quantities @ z > 6

