# WISH超広視野初期宇宙探査衛星計画:フィルターシステムおよびフィルター試作

○ 矢部清人 (京都大学)、岩田 生 (国立天文台)、東谷千比呂、山田 亨 (東北大学)、 他WISH検討グループ

A. 概要

WISHは、口径I.5mの主鏡と視野直径約30分角の近赤外 線カメラを搭載した宇宙望遠鏡衛星を2010年代中盤以降 に打ち上げ、地上からは達成不可能な深さで非常に広域 のサーベイを行なう計画である。

現在、我々はこの科学目標を達成するために最適なフィ ルターセットの検討を行っている。およそI-5µmの波長 域で6枚程度の広帯域フィルターを2種類仮定し、z≈8-15 のdropout銀河の期待される検出数を評価した。また、 現在想定している光学系において、各フィルターセット についての検出限界を推定し、サーベイプランの議論を 行なった。

また、フィルターセットの検討と平行して、宇宙での使 用を目的とした大型近赤外フィルターの制作可能性を検 証するための試作試験を進めている。これまでに、長波 長側の3.2µm広帯域フィルターの試作を行い、WISHで想 定されている80K程度までの冷却サイクル試験や、5年以 上の運用期間中に宇宙線による性能の劣化が生じないか を検証するためのコバルト60によるγ線照射試験などを 行った。その結果、これらの試験に対して概ね耐性を持 つことが確認できた。

## B. フィルターシステムの検討

#### フィルターセットの検討



#### 検出限界とサーベイプラン

現在WISHで想定されている光学系に基づき、理想的な温 度設計が達成出来た場合の検出限界を各フィルターセッ トについて推定した。

|                                                         | コンポーネント名 | 温度(K) | emissivity(%)             | 立体角 (stı             |
|---------------------------------------------------------|----------|-------|---------------------------|----------------------|
|                                                         | 主鏡       | 100   | 5                         | 0.036                |
|                                                         | 副鏡       | 100   | 5                         | 0.036                |
|                                                         | 平面鏡(表面)  | 100   | 5                         | 0.023                |
|                                                         | 平面鏡(裏面)  | 100   | 5                         | 0.16                 |
|                                                         | 第三鏡      | 100   | 5                         | 0.057                |
|                                                         | フィルター    | 80    | 10                        | 2.8                  |
|                                                         | クライオスタット | 80    | 10                        | 2.8                  |
|                                                         | スパイダー    | 100   | 90                        | 4.5×10 <sup>-3</sup> |
|                                                         | 表BI.各コン7 | ポーネン  | ントの温度と<br><sub>Set3</sub> | emissivit            |
| $\sum_{i=1}^{\infty} \text{Filter 0 } (1.0\mu\text{m})$ |          |       |                           |                      |

| 各コンポーネントからの熱放            |
|--------------------------|
| 射はgray bodyを仮定し、各積       |
| 分時間で3σ限界等級(0.6"Φ)を       |
| 求めた。検出器の効率は <b>60%</b> 種 |
| 度を仮定。また、フィルター            |
| にIxIO-5リークがあると仮定し        |
| ている。                     |



本ポスター講演では、これまでに行ってきたフィルター セットの検討および3.2µmフィルター試作試験の結果を 報告する。



# **C.3.2µm広帯域フィルター試作試験**

#### 試作試験の概要

宇宙で使用可能な大型近赤外フィルターの制作を検討す るにあたり、まず長波長側での試作試験を行った。今回 中心波長3.2µm幅0.6µmの広帯域フィルターを試作した。 このフィルターはSi基盤に膜を蒸着させた干渉フィル ターでバンドパスフィルター(BPF)とカットフィルター (CUT)の2枚でIセットになっている。サイズは2枚で80 mm x 80 mm x tl0 mmで、これに加え25 mmΦ x t2 mmの テストピースも試作した。



#### 冷却サイクル試験

た。

宇宙環境下での運用や打ち上げ時に起 こりうる急激な温度変化に耐性を持つ かを調べるため、冷却サイクル実験を 行なった。

常温から80Kまで冷やし、その後常温 に戻す温度変化をIサイクルとし、Iサ イクル当たり4時間かけるものと2時間

かけるものの2種類の実験を行なっ



図C7. (左上) 冷却サイクル実験の 様子。(左下)冷却サイクル実験に 使用したデュワー。(右下)フィ ルターホルダーに収まったフィル ター



#### 今回、この試作フィルターに対し、透過率や表面精度な どの測定や冷却サイクル試験や放射線試験などの耐性試 験を行なった。



図CI.80 mm角の製品フィルター (上)と25

mmΦのテストピース (下)

Wavelength  $(\mu m)$ 

図C2.常温での透過率。使用したFTIRの性質上 透過率の絶対値には数%の不定性があることに 注意 (以下同様)。

#### 納品検査/透過率測定/表面精度測定

試作フィルターの納品時にキズや膜の剥がれなどがないかどう かの検査を行なった。表面のキズの有無は目視確認で行ない、 膜の剥がれの有無はテープテストで検査した。テープテストは フィルターの角部分に絶縁テープを貼り、それを剥がした時に 膜の状態に変化がないかをみることで行なった。



また、東京大学のフーリエ分光光 度計(FTIR)を用いて、透過率の測定 を行なった。以下に、BPFとCUTの 常温での透過率曲線の様子を示す。 BPF+CUTの透過率は、図C2の通 り。

図C3. テープテストの様子





図C5. ZYGOのセッティングおよび測定の様子



#### 図C6.ZYGOによる表面精度測定の結果

国立天文台先端技術センターのZYGO社GPIを用い BPFとCUTの両面に対し表面精度の測定を行なっ た。測定波長**λ=500 nm**に対し、RMSで0.2-0.6λと いう結果になり、『光学研磨程度』という試作の 条件を満たしていることを確認した。

納品検査の結果、重大なキズや膜の剥がれなどは見ら れなかった。透過率測定の結果、ほぼ仕様通りの透過 率のフィルターが出来たことが分かった。また、表面 精度も仕様通りに出来ている事が分かった。

実験の方法は、真空を引いたデュワー 内にフィルターを設置し、液体窒素に 接触させながらヒーターで温度変化を コントロールすることで行なった。各 サイクルについて、温度および真空度 の変化は図**C8**の通り。

各サイクルの後に、目視およびテープ テストを行なったが、フィルター表面 および膜に異常は見られなかった。



図**C8**. 冷却サイクルにおける温度変化および真空度変化。図 中のSlowは4時間のサイクル、Rapidは2時間のサイクル。



更に急激な温度サイクルとして、 テストピースを液体窒素の中に直 接入れる実験を行なった。

約15分間液体窒素に浸した後、 フィルター表面の状態を目視確認 したが、異常は見られなかった。 また、テープテストの結果、膜に 異常は見られなかった。

図C4. (左) 測定に使用したFTIR (中央) BPFの常温での透過率 (右) CUTの常温での透過率

#### 放射線照射試験

都立産業技術センター協力の元、コバルト60によるγ線照射試験を行った。 照射量はフィルターの放射線源からの距離で決まり、5時間で計7 kradと14 kradの2種類を設定した。この照射量はL2点上での典型的な宇宙線量とエネ ルギーをそれぞれ10 prticles/cm2/sと300MeVと仮定した時の5年間(WISHが予 定するミッション期間)の放射線量に対応する。



図CII.放射線源が露出している様子。 中央やや下にフィルターと同じ高さに ある棒状の放射線源が見える。

目標の放射線量を照射した後に、フィルター表面 を目視検査した結果、目立った変化はなかった。 また、テープテストを実施した結果、表面の膜が 剥がれるなどの現象は起こらなかった。

また、常温での透過率を測定した所、透過率曲線 の形や波長範囲の変化などは見られなかった。



図CI0.放射線試験の様子。(左上)上から見たフィルターの配置。右側の球体が放 射線源の位置に対応。(右上)正面から見たフィルターの配置。(左下)7 kradに対応 する位置のフィルタースタンド。(右下) 14 kradに対応する位置のフィルタースタ ンド。

## D. まとめと今後の課題

WISHの科学目標を達成するために最適なフィルターセットの 検討を行った。およそ1-5µmの波長域で6枚程度の広帯域フィ ルターを2種類仮定し、z≈8-15のdropout銀河の期待される検出 数を評価した。また、現在想定している光学系において、各 フィルターセットについての検出限界を見積り、サーベイプラ ンの議論を行なった。

また、長波長側の3.2µm広帯域フィルターの試作を行い、 WISHで想定されている80K程度までの冷却サイクル試験や、5 年分に相当する量のγ線照射試験などを行った。その結果、こ れらの試験に対して概ね耐性を持つことが確認できた。

今後、短波長側のフィルターの試作も含め、振動や曲げ応力 試験など更なる耐久試験を行う予定である。