WISH Exploration of Galaxies in the Epoch of Cosmic Reionization

2012/07/19 Ikuru Iwata (NAOJ)

Scientific Objectives

- Detections of 'First Galaxies' (z>10)
- Understanding of the Cosmic Reionization

Obs. Wavelength(μ m)

'Drop-out' Method - Lyman Break Galaxies z=9,12,15 E(B-V)=0.1

Selection of High-z Galaxies with Two-Colors

Narrow-band Search for Lyman α Emitters (LAEs)

Ouchi et al. 2010, ApJ 723, 869

Reionization Epoch explored with Subaru

Ouchi et al. 2009 - z~7 LBGs

- Suprime-Cam imaging of SDF and GOODS-N. 1568 arcmin2 (0.5 deg2)
- z-y > 1.5
- y-band limit (3σ): 26.4 26.2 AB mag.

Ono et al. 2012 - Spectroscopic confirmations

- Keck / DEIMOS spectroscopy of 11 z~7 candidates
- Three z~7 galaxies were identified
- Lower fraction of $Ly\alpha$ galaxies evolution of IGM neutral hydrogen fraction?

Suprime-Cam Narrow-band Searches for Lymanα Emitters (LAEs)

- NB921 (z=6.6): Kodaira et al. 2003; Taniguchi et al. 2005; Kashikawa 2006; Ouchi et al. 2010
- NB973 (z=7.0): lye et al. 2006; Ota et al. 2008; Hibon et al. 2012
- NBI006 (z=7.3): Shibuya et al. 2012

LAE LF at z=5.7 and 6.5

Clustering of z=6.6 LAEs

Toshikawa et al. 2012 - Protocluster at z~6

Toshikawa et al. 2012, ApJ 750, 137

Hyper Suprime-Cam Strategic Survey

- Deep Layer: 28 deg²
 - grizy + NB387, NB816, NB921
 - z=26.0 y=25.3 (5σ)
 - Ultra-Deep Layer: 3.5 deg²
 - grizy + NBs 387, 527, 718, 816, 921, 101
 - z=26.8 y=26.3 (5σ)
 - Hundreds of z-drop $(z\sim7)$
 - Tens of y-drop ($z\sim 8$) with VISTA/UKIDSS
 - Thousands of z=5.7 and 6.6 LAEs
 - Several tens of z=7.3 LAEs

from HSC SSP proposal draft

Galaxies at z>7 explored with HST

Bouwens et al. 2011, ApJ 737:90

- HUDF09 + two nearby fields: 14 arcmin²
 - ACS: 29.4 30.1 mag. (HUDF09), 28.8 29.2 mag. (nearby fields)
 - WFC3/IR: 29.6 29.9 mag. (HUDF09), 29.0 29.5 (nearby fields)
- WFC3/IR Early Release Science observations: 40 arcmin²
 - ACS: 28.0 28.5 mag.
 - WFC3/IR: 27.9 28.4 mag.

Color Selection Criteria (for HUDF09)

UV Luminosity Function at z~7

UV Luminosity Function at z~8

HSTWFC3/IR Studies for z>7 Galaxies

- Bradley et al. arXiv:1204.3641
 - WFC3 Pure Parallel Survey (7.4 < z < 8.8)
 - 274 arcmin² with Y, J, H 33 Y-drop with 25.5 < J < 27.4
 - No evidence of an excess at bright-end
- Oesch et al. arXiv:1201.0755
 - CANDELS GOODS-S
 - 95 arcmin² 16 Y-drop
 - Confirms pure luminosity evolution in UVLF from z~8 to z~4
- Lorenzoni et al. 2011, MNRAS 414, 1455
 - HUDF 4.2 arcmin² + ERS 37 arcmin²
 - Ionization photon budget
- Search for Gravitationally Lensed LBGs
 - CLASH: Zitrin et al. 2012, ApJ 747, L9
 - Bouwens et al. 2009, ApJ 690, 1764

Additional Requirements to Eliminate Contaminations

- No detection in optical bands
 - Reject >2sig single detection and >1.5sig detection in more than one band
 - $\chi^2_{\text{opt}} = \Sigma_i \text{SGN}(f_i)(f_i/\sigma_i)^2$. (1)
 - SGN(f_i): I if fi>0, -I if fi<0
 - Reject objects with $\chi^2 > 5$ or 3
- Simulations to estimate contaminations:
 - Contamination rate: 6-8% for HUDF09, 22-38% for ERS
- Dwarf stars, SNe: eliminate point sources
 - Minor populations: only one unresolved sources within the criteria

	z~7 (z850-dropouts)	z~8 (Y105-dropouts, *Y098-dropouts)
HUDF09	29	24
HUDF09-I	17	14
HUDF09-2	14	15
ERS	13	6 *
total	73	59

UVLF Evolution

UVLF Evolution (Schechter function parameters)

Issues on LBGs in the Reionization Epoch

- Evolution of UVLF and Star-formation Rate Density
- Ionization Photon Budget
 - Steepness of Faint-end slope?
- Steep UV slope Metal-poor stellar populations?
- Number density of luminous LBGs

UV Luminosity Density (SFR Density)

Salpeter IMF, 0.1<M/Msun<125 Assuming Constant SF over >100Myr

UV Luminosity Density (SFR Density)

Table 8UV Luminosity Densities and Star Formation Rate Densities to -17.7 AB mag^{a}

Dropout Sample	$\langle z \rangle$	$\log_{10}\mathcal{L}$ (erg s ⁻¹	$\log_{10} \text{SF}$ $(M_{\odot} \text{Mpc})$	R density $c^{-3} yr^{-1}$)
		$Hz^{-1} Mpc^{-3}$)	Uncorrected	Corrected ^b
z.	6.8	25.88 ± 0.10	-2.02 ± 0.10	-2.02 ± 0.10
Y	8.0	25.65 ± 0.11	-2.25 ± 0.11	-2.25 ± 0.11
J^{d}	10.3	$24.29^{+0.51}_{-0.76}$	$-3.61^{+0.51}_{-0.76}$	$-3.61^{+0.51}_{-0.76}$
J^{d}	10.3	<24.42 ^c	$< -3.48^{\circ}$	< -3.48 ^c
B	3.8	26.38 ± 0.05	-1.52 ± 0.05	-0.90 ± 0.05
V	5.0	26.08 ± 0.06	-1.82 ± 0.06	-1.57 ± 0.06
i	5.9	26.02 ± 0.08	-1.88 ± 0.08	-1.73 ± 0.08

Critical SFR Density in Shull et al. 2011: log10(0.018)= -1.74

Ionization Fraction Dependence on SFR History

Shull et al. arXiv:1108.3334

Faint-End Slope of UVLF

- Number density of faint galaxies has critical importance in Ionization Photon Budget.
- Some numerical simulations return steep UV slope at z>6 (Jaacks et al. MNRAS 420, 1606)
- Very deep observations are required.

Steep UV Slope - Extreme Stellar Populations?

• Bouwens et al. 2010, ApJ 708, L69; ApJ 709, L133; Finkelstein arXiv:1110.3785

But β can be <-2 without extremely metal poor stellar populations

(Schaerer and de Barros 2010, A&A 515, A73)

McLure et al. 2011 MNRAS 418, 2074

- McLure et al. 2011, MNRAS 418, 2074:
 - HUDF + ERS 6.0 < phot-z < 8.7
 - 70 objects
 - UV Slope β Mean: -2.05 $\leftrightarrow \beta$ < -2.5 (Bouwens et al. 2010, Labbe et al. 2010)

WISH Ultra-Deep Survey

Point Source, 10^4 sec

0.5'' Extended Source, 10^4 sec

WISH Survey Plan

	Depth [AB mag.]	Area [sq. deg]	Days
Ultra Deep Survey	28.0	100	I,500
Ultra Wide Survey	25.0	I,000	50-100
Extreme Survey	~29.5	~	<100

WISH Broad-band Filter Set

Wavelength (microns)

z=9,12,15 E(B-V)=0.1

- Continuous Sampling for z>8
- Determine UV Slope

WISH: Expected Sensitivity

Zodiacal Light = 3x Ecliptic Pole

Selection of High-z Galaxies with Two-Colors

Completeness Estimates

Assumption on Evolution of Luminosity Function(I) Empirical Evolution

Assumption on Evolution of Luminosity Function(2) Semi-Analytic Model by Kobayashi et al.

Expected Numbers with WISH Ultra-deep Survey

- 100 sq. deg survey with 5 filters from 1.0 μ m to 3.0 μ m
 - Limiting magnitudes 28AB (point source, 3σ)
 - Total 1,500 days

N/deg ²	z=8-9	z=10-12	z=13-17
Empirical Ev.	1690	104	0.72
SAM	631	49.7	I.07
DMH	852	4.12	0.003

WISH Can Determine How Bright-End of UVLF Evolves at z>8

Narrow-band Filter Search for LAEs

NBF Set 01

NBF Set 01 (R~70)

Name	λς	Z	FWHM	R
0100_00	I.095	8.0	0.015	73.0
0100_01	I.340	10.0	0.019	70.5
0100_02	I.580	12.0	0.022	71.8
0100_03	1.945	15.0	0.027	72.0
0100_04	2.188	17.0	0.031	70.6
0100_05	4.4052	5.71*	0.063	69.9
0100_06	4.9720	6.58*	0.071	70.0

 \ast redshift for $H\alpha$

NBF Set 01, Limiting Mag.

 $R\sim70$, Zodiacal Light = 3x Ecliptic Pole

Summary of Limiting Magnitudes and Expected Number of Detections for <u>WISH</u>

Limits are for 3σ

		R=	50	R=100	
redshift	Exp Time	Lim Mag.	N/deg ²	Lim Mag.	N/deg ²
0	I0h	26.0	52.9	25.3	9.1
Z-8	50h	26.9	91.3	26.2	71.1
z=10	I0h	26. I	9.3	25.4	0.96
	50h	27.0	18.8	26.3	9.7
z=12	I0h	26.0	2.40E-02	25.3	2.20E-02
	50h	26.9	0.40	26.2	0.42

WISH Can Detect Large Sample of LAEs at z=8-10

Cross-Correlation of Galaxies and IGM 21cm Emission

Cross-Correlation of HI 21cm Emission and Galaxies

- Wyithe and Loeb 2007, MNRAS 375, 1034; Furlanetto and Lidz 2008, ApJ 660, 1030
- Advantage of Galaxy 21 cm line cross correlation over 21 cm signal alone:

Resolving History of Reionization

- Beginning: galaxy and 21 cm are positively correlated
- Galaxies ionize overdense regions.
 Underdense regions remain neutral -Brief period of low amplitude crosscorrelation (Xi=0.15 in the left model)
- Galaxy and 21 cm quickly become anticorrelated

Lidz et al. 2009, ApJ 690, 252

Requirements on the Galaxy Survey

- Accurate redshifts
 - LAE survey would be good
- Large area coverage
 - to improve S/N
 - >100 deg² survey area, coordinated with 21cm line obs.

Furlanetto and Lidz 2008

JWST NIRCam

- Two Channels, both 2.2' x 4.4'
 - Short: 0.5 2.3 μm, 32 mas (8 H2RGs)
 - Long: 2.5 5.0 µm, 64 mas (2 H2RGs)
- Coronagraphic High Contrast Imaging
- Slitless Grism Spectroscopy R~1800

NIRCam Filters

JWST / NIRCam Expected Surveys

- Assume operation similar to HST
- Mirror size: x 2.6, Field of View: x 2.0
- HST WFC3/IR Deep Surveys: ~300 arcmin² in a few years
- NIRCam Surveys with Depth Similar to Current WFC3/IR Surveys (~29 AB mag.)
- $\rightarrow \sim 1 \text{ deg}^2$ in a few years. Several deg² in 5-10 years.

Number Density of z=12 Galaxies

improving the detection limit with ELTs for extended sources

WISH and JWST for Exploration of EoR

• WISH:

- Discovery of Bright LBGs at 8 < z < 15
 - Feed Spectroscopy Targets to ELTs
- Bright-End of UV Luminosity Function
- UV Slope of Bright LBGs
- LAEs at z=8 and 10
 - Feed to ELTs
 - Cross-correlation with HI 21cm Line Surveys?
- JWST:
 - Determination of Faint-End of UV Luminosity Function
 - Contribution of Faint Galaxies to the Cosmic Reionization
 - Discovery of Galaxies at z>8 (up to z~20?)
 - Spectroscopy with NIRSpec
 - Limited Survey Area

'First Stars'?

Expected Mag. of Isolated Pop-III Stars

 $60\;M_{\odot}$

Rydberg et al. arXiv: 1206.0007

Comparison: Imaging

	Subaru MOIRCS	Subaru GLAO	TMT IRIS	HST WFC3/IR	JWST NIRCam
望遠鏡口径	8.2m	8.2m	30m	2.4m	6.5m
波長域	0.9-2.5µm	0.9-2.5µm	0.84-2.4µm	0.9-1.7µm	0.9-2.3µm / 2.4-5.0µm
空間 サンプリング	0.117''/pix 0.4''@2µm	~0.1''/pix 0.2''@2µm	4 mas I0mas@Iµm	0.13''/pix FWHM~ 0.25''	32 mas / 64 mas
視野	28 □'	~I20 □'	0.075 ¤'	4.65 □'	9.7 □'

Comparison: Spectroscopy

	Subaru MOIRCS	Subaru GLAO	TMT IRIS	HST WFC3/IR	JWST NIRSpec
波長域	0.9-2.5µm	0.9-2.5µm	0.84-2.4µm	0.9-1.7µm	0.6-5µm
空間 サンプリング	0.117''/pix 0.4''@2µm	~0.1''/pix 0.2''@2µm	4 - 50 mas	0.13''/pix FWHM~ 0.25''	0.2"x0.45"
視野	~25 □'	~120 □'	0.2-10 <u>"</u>	4.65 □'	I 2.24 □'(MSA) 3"x3"(IFS)
分光機能	Single-Slit MOS IFS	Multi-IFS	IFS	Slitless	Slits Microshutters IFS
波長分解能	600-3000	-3000?	4000-10000	TBW	100, 1000, 2700

Euclid, WFIRST, and WISH

	Euclid	WFIRST	WISH
Mirror	I.2m	I.3m	I.5m
FoV	0.5 deg ²	0.3deg ²	0.23deg ²
Visual Imager	RIz	↓ ↓	
NIR Imager	YJН	0.6-2.0µm	0.9-5.0µm
Lim. Mag.	24AB	25.9AB	28AB
Survey Area	20,000 deg ²	>11,000 deg ²	100 deg ²
Primary Science	Dark Energy	DE, Exoplanet, QSO	First Galaxies