SNIa Cosmology with WISH satellite Nao Suzuki (Lawrence Berkeley Lab)

§1: Introduction to Type Ia Supernova
§2: SNIa Cosmology Today
§3: SNIa Challenges (systematic errors) New Standard Stars for IR
§4: SNIa Cosmology with WISH

Supernova Type Ia : Standard Candle Phillips Relation (1993)

Physics Today (2003)

Discovery of Dark Energy (SCP 1997)

Gerson Goldhaber reported non-zero Λ on 24th in Sep '97

Scale of the Universe

Accelerating Universe

Expansion History of the Universe

HST Cluster SN Survey

Nao Suzuki & SCP PI: Saul Perlmutter

SNIa Cosmology Today (2011)

Supernova Cosmology Project (Suzuki et al. arxiv:1105.3470)

Λ Today

Combination of SNe with: BAO (Percival et. al., 2010) CMB (WMAP data, 2011) For a flat Universe:

LCDM: $\Omega_m = 0.271 \pm 0.012(\text{stat}) \pm 0.014(\text{sys})$ with curvature: oLCDM: $\Omega_k = 0.002 \pm 0.005(\text{stat}) \pm 0.005(\text{sys})$

w=P/ ρ : equation of state Q. Is *w* -1?

wCDM: $w = -1.008 \pm 0.052(stat)$ $-1.013 \pm 0.070(sys)$ SNe + BAO + CMB ... and allowing for curvature: owCDM $w = -1.006 \pm 0.058(stat)$ $-1.003 \pm 0.093(sys)$ with systematics

•w=-1 : cosmological constant •w=0 : matter •w=1/3: radiation $E \propto a^{-3(1+w)}$

Future of SNIa Cosmology Q: Can we Reduce Systematic Errors?

 Q1 : Observational Systematic Error => SDSS stars and Perfect Black Body stars

• Q2 : SNIa is not well understood? => Spectral Library & Simulation

The Origins of Systematic Errors Today

- I : Zero Point is not accurate enough (will be calibrated them with 300,000 SDSS F-stars)
- II : Standard Star Calibration (HST CALSPEC) is not accurate enough (will be replaced by DC WDs)

Discovery of Perfect Black Body Spectra: found as a Quasar Target Only 20 stars out of a million stars

• DR8 : 605,772 stars => 5 stars

• DR9 : 110,929 stars=> 9 stars

• DR10: 81,892 stars=> 10 stars (July 2013)

Looking at the Future with WISH/JWST today 0.3%, but we can do 0.1%

SNIa models 2D Simulation => Observation Kasen, Ropke, Woosely (2009)

- 2D model
- 56Ni,
- Oxygen Mass,
- Carbon Mass
- Kinetic Energy
- Reproduces LTCV

SNIa Rates

- z > 1.0 is now well understood
- (Gauer et al 2011) assume rate is constant

WISH SN Survey (100 deg) 2000 SNe (3-band, 30-day x 5)

$w=P/\rho$: equation of state Q. Is *w* constant over time? wa=0? A. No clear sign of non-zero wa, yet

Dark Energy Task Force (DETF) Figure of Merit : FoM $\sigma(w_0)\sigma(w_a)$ $w(a) = w_0 + (1 - a)w_a$ FoM=39.3(stat)22.6(sys)Suzuki et al 2012 **SCP UNION2.1**

Dark Energy in 2015-2025: Conclusion & Summary

- Reducing Systematic is mandatory
- Calibration is the key
- SNIa + CMB (Planck) + BAO woul powerful combination in the next 10 years

- DES can find z > 1 SNe but needs z, y-band
- With WISH SNIa can lead Dark Energy Studies
- New Discoveries are yet to come (PopIII etc)
- WISH satellite can enhance FoM => 300

Backup Slides

SN Factory, Palomar Transient Factory (PTF), SuperNovaLegacySurvery (SNLS), Suprnova Cosmology Project (SCP)

SN Factory, Palomar Transient Factory (PTF), SuperNovaLegacySurvery (SNLS), Suprnova Cosmology Project (SCP)

From Deceleration to Acceleration

