
Participation in the JAXA/ISAS Mission WISH: Wide-field Imaging Surveyor for High-redshifts

Matt Ashby Joe Hora Smithsonian Astrophysical Observatory has proposed to NASA to team with the JAXA/ISAS WISH project to

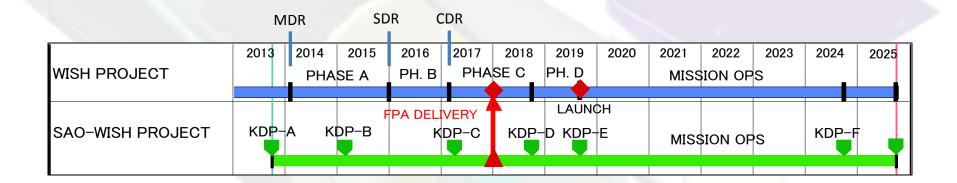
- perform groundbreaking surveys of the Cosmic Dawn
- supply the WISH focal plane consisting of 32 H2RG HgCdTe (0.9 – 5.0 μm) arrays
- Operate the U.S. WISH Data Center

SAO-WISH Science Team

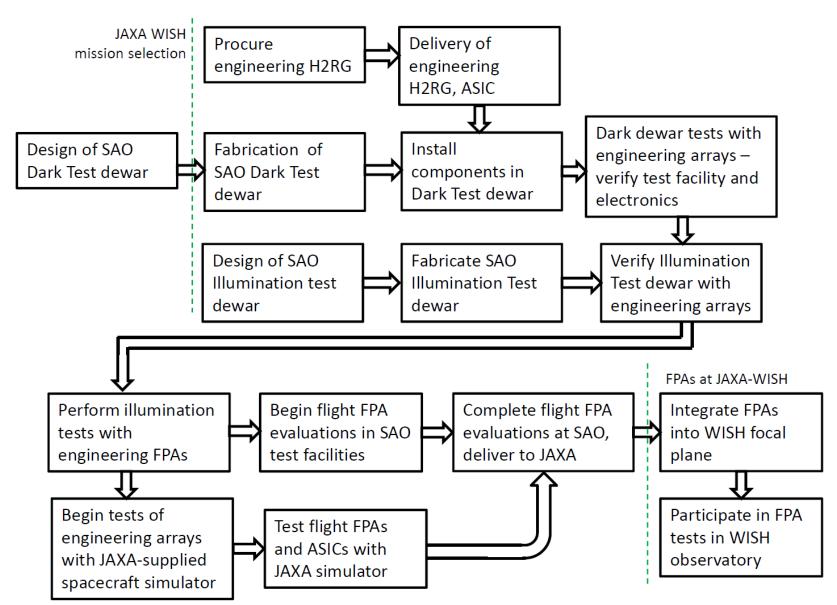
- Giovanni Fazio SAO WISH P. I.
- Gary Melnick SAO WISH Deputy P. I.
 - will assist Dr. Fazio in leading the SAO science team,
 - develop the survey observing plans
- Matthew Ashby
 - US lead for source extraction, bandmerging, catalog construction, and identification of high-redshift sources in the WISH surveys.
 - Help establish the US-WDC
 - FPA testing
- Joseph Hora
 - lead FPA test effort at SAO
 - support the science survey planning
 - data reduction and analysis techniques
 - Galactic science programs.
- Howard Smith
 - science and data programs
 - direct the US-WDC.
- Volker Tolls
 - FPA testing, develop on-ground science tests
 - on-orbit check-out and performance monitoring
 - Galactic science programs.

- Zhong Wang
 - Participate in FPA testing
 - oversee the science data pipeline design and implementation
 - statistical analysis of the faintest galaxy population.
- Steven Willner
 - participate in FPA testing
 - Observing program design, and
 - science analysis of distant galaxies and active galactic nuclei.
- Daniel Eisenstein
 - study of intermediate and high-redshift galaxies with WISH, focusing on the impact of large-scale structure.
- Lars Hernquist
 - participate in the interpretation of the observations
 - perform cosmological simulations of galaxy and structure formation.
 - Avi Loeb
 - will develop state-of-the-art models of high-redshift galaxies in the WISH wavelength range.

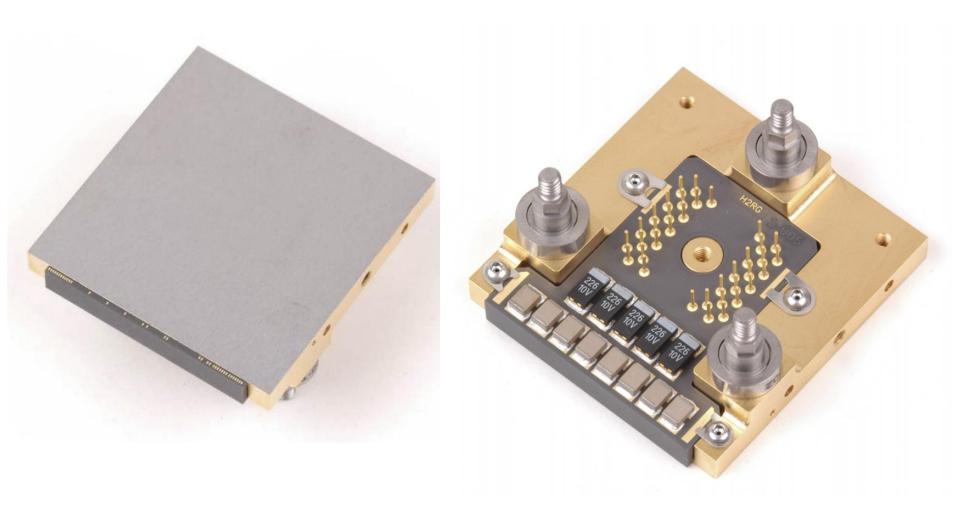
SAO Proposal Status


- Proposal to NASA prepared in Fall 2012
 - Second Stand Alone Missions of Opportunity Notice (SALMON-2) Astrophysics Mission of Opportunity (MO) science investigations through the Explorer Program
 - Rough Order of Magnitude (ROM) price estimate obtained from Teledyne ~ \$35M
 - Science case and Management Plan written, level of effort at SAO determined for FPA testing and science participation
 - Proposal submitted in December 2012, total \$59.5M including ~25% reserves
- Decision expected in mid-2013

Comparison of WISH, Euclid, WFIRST, JWST


	Euclid ^a	WFIRST (DRM1) ^b	WFIRST (NRO) ^{<i>c</i>}	JWST	WISH
Mirror	1.2m	1.3m	2.4m	6.5 m	1.5m
FOV	0.55 deg ²	0.375 deg ²	0.375 deg ²	0.0026 deg ²	0.24 deg ²
Visible Imager	0.55 – 0.90 μm			0.6 – 2.3 μm	
NIR Imager	0.92 – 2.0 μm	0.73 – 2.4 μm	0.92 – 2.0 μm	2.4 – 5 μm	0.90 – 5.0 <i>µ</i> m
Lim. Mag. (5ơ)	24 AB	26 AB	27.5 AB	29.1 AB ^{<i>d</i>}	28 AB ^e
Survey Area	15,000 deg ²	3,400 deg ²	~ 3,400 deg ²	0.044 deg ^{2 d}	100 deg ^{2 <i>e</i>}
NIR Spectroscopy	1.1 – 2.0 <i>µ</i> m		Grism 1.3 – 2.0 μm	Grism 2.4 – 5.0 μm	Grism Option 1 – 5 μ m
Primary Science	Dark Energy, Dark Matter	Dark Energy, Exoplanets, Deep NIR Surveys	Dark Energy, Exoplanets, Deep NIR Surveys	First Galaxies	First Galaxies, Reionization, Galactic Science

^{*a*} [27]; ^{*b*} Green et al. [35]; ^{*c*} Dressler et al. [22]; ^{*d*} JWST NIRCam Mosaic of the Chandra Deep Field South [44]; ^{*e*} WISH Ultra-Deep Survey; the WISH Extreme Survey reaches 29.5 AB mag within 0.24 deg².


Project Schedule Summary

FPA Test Flow

H2RG Flight Packaging

2x2 Configuration of H2RG Arrays

Ŧ

雷

1

P

1

FPA Requirements and Margin

FPA Parameter	Requirement	Expected	% Margin
Median read noise	≤15 e-/sec	≤12 e-/sec	25
Median pixel-pixel crosstalk	≤4 %	≤2%	100
Median quantum efficiency	≥70%	≥80%	14
Median dark current	≤0.05 e-/sec	≤0.01 e-/sec	400
Median well capacity	≥65000	≥85000 e-	30
Inoperable pixels	≤5%	≤1%	400

Time Requirements for Surveys

	Depth (5ơ) (AB Mag.)	Area (deg ²)	Center Wavelengths (µm)	Survey Time ^a (years)
Ultra-Deep Survey (UDS)	28	100	1.0, 1.4, 1.8, 2.3, 3.0	3.48
Ultra-Deep Survey, 4µm (UDS-II)	28	10 ^b	UDS + 4.0	0.24
Ultra-Wide Survey (UWS)	25	1,000	1.0, 1.4, 1.8, 2.3, 3.0, 4.0	0.24
Extreme Survey (ES)	29.5	0.24	1.0, 1.4, 1.8, 2.3, 3.0	0.13

Assumes 85% observing efficiency toward the ecliptic pole, detector QE =70%, dark current =0.05 e⁻/s, read noise = 15 e⁻ (for N=1, CDS), throughput of 74%, and Fowler 4 sampling

FPA testing at SAO

- All FPAs will be screened at Teledyne
 - Must meet procurement specs in order to deliver
- Each FPA will be tested at SAO to confirm performance, tune parameters to optimize for individual ASIC operation
- Subset of FPAs will be tested for
 - more extensive exploration of detector characteristics: point source response, bright source effects, etc.
 - development and verification of flight ASIC code
 - interface to WISH electronics

Low Background Tests

- "Dark Dewar" with arrays in 2x2 configuration
- For testing low background operation
 - Read noise
 - Dark current
- Simple flood illumination of detectors to measure
 - Operability
 - Radiometric stability
 - Quantum efficiency
 - Uniformity
 - Linearity
 - Well depth
 - Residual images

Spot Illumination Tests

- Second test facility will provide focused point sources on the arrays, wheel for filters in 1-5 μm range
- Detector parameters to be measured:
 - Quantum efficiency
 - Linearity
 - Well depth
 - Residual images
 - Radiometric stability
 - ASIC readout modes and functionality (e.g. windowing and guide modes)
 - Crosstalk inter-pixel and between SCAs in the 2×2 configuration

FPA Characterization

- Operate FPAs in flight-like modes pointing, guiding, science frame readout
- Use flight ASIC code, WISH electronics simulator
 - Effects of guiding windows on science data
 - Crosstalk between arrays
- Perform optimization of biases, operating modes