Summary of WISH Survey Plan

Kiyoto Yabe (NAOJ)

- Filters suitable for various scientific case
- Filters cover wavelength range of 1-5µm without any gaps
- Narrower filters in bluer wavelength region

WISH standard filter set

Wavelength (microns)

- Narrow band filters are under consideration
- Slitless spectroscopy is also under consideration as option

WISH narrow-band filter set

Wavelength (microns)

- Limiting magnitudes for the WISH broad band filters
- Reaching 28 mag (AB) in 10-20 hrs exposure in Filter 0-4
- Shallower limiting magnitudes in Filter 5-6 (>50hrs for 28 mag)

Exposure Time (hours)

- Limiting magnitudes for the WISH narrow band filters
- Shallower than the those for the broad band filters
- Reaching 26 mag (AB) in ~20 hrs exposure in NB Filter 0-3

R~50, Zodiacal Lig

Exposure

Summary of WISH Science Goals:

- Main scientific goals
 - ✓ Survey of galaxies at z>7 including high-z QSOs and GRBs
 - Exploring the 1st generation of galaxies
 - Galaxy formation and evolution
 - Cosmic re-ionization process
 - ✓ NIR survey of Type-Ia SNe at high redshift
 - Light curves of SNe by multiple observations
 - History of cosmic expansion and dark energy
 - ✓ Broad study on galaxies at z < 7
 - ✓ Galactic objects (bulge astrometry, open clusters, disk dynamics)
 - ✓ Extrasolar planes (transit objects, micro-lensing)
 - ✓ Objects in solar system (H₂O ice on asteroids)

Expected numbers of galaxies at z>7:

- Searching for galaxies at z>7 with dropout technique
 - \checkmark WISH filter set with sharp cutoff
 - Galaxies at z=8-9 as filter0(1.0µm)-dropout
 - Galaxies at z=11-12 as filter1(1.4µm)-dropout
 - Galaxies at z=13-17 as filter2(1.8µm)-dropout
 - \checkmark Expected number of the galaxy detections
 - w/o LF evolution
 - ▶ w/ LF evolution (empirical, from DMH, SAM)

 \checkmark ~600, ~50, and ~1 galaxies per 1 deg² at z=8-9, z=11-12,

and z=14-17, respectively, are expected

* The expected detection numbers per 1deg²

	Ζ	No LF evolution	LF evolution (empirical)	LF evolution (DMH)	LF evolution (SAM)
0-drop	8-9	4000	1690	852.3	631.2
1-drop	11-12	2393	104.2	4.116	49.7
2-drop	14-17	1249	0.723	0.003	1.071

Survey Strategy:

Possible Survey Fields:

- Field selection
 - ✓ Requirements
 - Low zodiacal background (how far from ecliptic plane)
 - Visibility from L2 (ecliptic pole is ideal)
 - Multi-wavelength data (especially deep optical data)
- Field candidates
 - ✓ Hyper Suprime-Cam (HSC)
 - Multi-wavelength data
 (g, r, i, z, y-bands)
 - Deep and Wide survey
 - (~30 deg. for Deep and
 - ~1400 deg. for Wide)
 - Most fields are near ecliptic plane (Dec.~0 deg.)

Wide : Spring/Autumn equatorial region + HectoMAP region

Deep : XMM-LSS, E-COSMOS, ELAIS-N1, DEEP2-3

Udeep : SXDS (XMM-LSS), COSMOS

cf. Subaru/Hyper Suprime-Cam Deep Survey fields (slide by M. Tanaka-san)

Visibility:

- Angle of the telescope toward and against the sun is limited
 - ✓ Power supply from solar puddle
 - \checkmark Thermal environment of satellite bus
 - \checkmark Size of the sun shield

• The range of the sky that the telescope can see at some point can also be limited

• The visibility is roughly estimated with the following assumptions

- ✓ Available angle: 0 deg. toward and 20 deg. against the sun
- \checkmark 1 year = 360 days
- \checkmark Orbit at L2 point is neglected

WISH mini international workshop (Mar. 2013)

Visibility:

- Visibility map for a given coordinate (R.A. and Dec.), showing the number of visible days
- Higher (lower) visibility near ecliptic pole (plane)

Visibility:

- Visibility at HSC Deep Survey fields (near the equator)
- Visible for ~45 days per year (except for ELAIS-N1)
- The number of days continuously visible is ~20 days

WISH mini international workshop (Mar. 2013)

Visibility:

- Visibility at the ecliptic poles (EPs)
- Visible for ~180 days per year
- The number of days continuously visible is ~180 days

WISH mini international workshop (Mar. 2013)

Visibility:

• Visibility map for a given coordinate (R.A. and Dec.), showing the number of visible days (in case of the available angle of -5 deg. toward the Sun and 30 deg. against the Sun)

Visibility:

• Visibility at HSC Deep Survey fields (in case of the available angle of -5 deg. toward the Sun and 30 deg. against the Sun)

Possible Survey Fields:

- Visibility near the equator
 - ✓ 40-80 days per year
 - \checkmark 20-40 continuous days per year
 - Not ideal for the SN surveys
 - SN surveys require >5 different observations every 10 days
 - → >40 continuous days are necessary
- Visibility near Ecliptic pole is good
- Possible Survey Plan
 - ✓ HSC-Deep Fields
 - ▶ XMM-LSS, COSMOS, DEEP2
 - ~20 deg² (~7 deg² each)
 - Deep optical data available
 - \checkmark Other fields near EP
 - ► ~80 deg²
 - Deep optical data unavailable
 - WISH-Deep Field with HSC?

Wide : Spring/Autumn equatorial region + HectoMAP region

Deep : XMM-LSS, E-COSMOS, ELAIS-N1, DEEP2-3

Udeep : SXDS (XMM-LSS), COSMOS

Summary:

- WISH survey strategy
 - ✓ Ultra Deep Survey (UDS)
 - ▶ ~28 AB mag in Filter 0, 1, 2, 3, 4
 - ~100 deg² (~10 deg² for Filter 5) in ~1500 days
 - ✓ Ultra Wide Survey (UWS)
 - ▶ ~25 AB mag in Filter 1, 2, 3 (+4?)
 - ~1000 deg² in ~50 days
 - ✓ Extreme Deep Survey (EDS)
 - ▶ ~30 AB mag in Filter 1, 2, 3, 4?
 - ▶ 1FoV (~0.25 deg²) in xx days?
 - ✓ Narrow Band survey and other scientific observations?
- Possible survey fields for UDS (100 deg²)
 - ✓ ~20 deg² in HSC-Deep fields
 - \checkmark ~80 deg² in fields near ecliptic poles
 - ✓ Possibility of WISH Deep Survey with Subaru/HSC?

ons and limits are from Bouwens et al. (2011) and assume workshop (Mar. 2013) is in the first case and no $z \sim 10$ candidates (i.e., an upper

^{ase.} Additional Information:

y density determinations are converted into SFR

the Madau et al. (1998) conversion factoreter initial mass function (IMF; with a stellar anging from 0.1 M_{\odot} and 125 M_{\odot}). As often na et al. 2007; Stanway et al. 2005; Bouwen is conversion factor in the SFR

is conversion factories that the SFR relatively constant for ≈ 100 r prior it is sequently, use of this conversion ould result ate of the SFR (the ctors of \sim or galaxie young ages.

ry blue UV-cont m buwens et al. 2010a, 2010

2010; Sunker et al. 2010; see also Bouwen lust extinction in $z \gtrsim 7$ galaxies is likely small ction for dust is made in computing the SFI 7. At $z \lesssim 6$, we adopt the dust corrections given et al. (2005), Reddy & Steidel (2009), and 2009). Our SFR density estimates are included Figure 16

Figure 16. nosity densities while to cal plane on WISH telescope: 8 are ju Mertiple differing to an orovide us almost same limiting luminosity at $z \sim 4$. The SFR to these limits are just of an 4%, respectively, This provid strategy sofe the differing is still under as been in the ~1. Gyr from $z \sim 7-8$ to $z \sim 0$ itra Wide Survey (UWS) e was nearing its plat SFR density at $z \sim 2-3$.

2010

ft al.

Densities from the Stellar Mass Density

g to compare the present SFR density determiinferred from recent estimates of stellar mass (Labbé et al. 2010a, 2010b; Stark et al. 2009;

フ

Additional Information:

	redshift	LF 進化なし	'Empirical' 進化	DMH 進化	SAM
0-dropout	8-9	4,000	$1,\!690$	852.3	631.2
1-dropout	11-12	$2,\!393$	104.2	4.116	49.7
2-dropout	14 - 17	$1,\!249$	0.723	0.003	1.071

Table 2.2: Lyman Break 銀河の1平方度あたりの検出期待数。3σ 28.0 AB 等級の検出限界での期待数。

			N / FoV.		
Filter Name	λ_c	$z_{ m LAE}$	10hrs	$50 \ hrs$	
0200-00	1.092	8.0	12.3	21.3	
0200-01	1.336	10.0	1.6	5.2	
0200-02	1.580	12.0	$5.5 imes 10^{-3}$	0.09	
0300-00	1.095	8.0	2.1	16.6	
0300-01	1.340	10.0	0.22	2.3	
0300-02	1.580	12.0	5.1×10^{-3}	0.10	

Table 2.4: 狭帯域フィルタでの観測によるオンソース 10 時間 / 50 時間積分での 1 視野あたりの LAE 検出期待数。

Possible Survey Fields:

Wide : Spring/Autumn equatorial region + HectoMAP region

Deep : XMM-LSS, E-COSMOS, ELAIS-N1, DEEP2-3

Udeep : SXDS (XMM-LSS), COSMOS

cf. Subaru/Hyper Suprime-Cam Deep Survey areas (slide by M. Tanaka-san)

WISH mini international workshop (Mar. 2013)

Additional Information: