WISH Exploration of Galaxies in the Epoch of Cosmic Reionization

2012/07/19, 2013/03/27 Ikuru Iwata (NAOJ)

Scientific Objectives

- Detections of 'First Galaxies' (z>10)
- Understanding of the Cosmic Reionization

- I. What will we know with WISH Ultra-Deep Survey?
- 2. Narrow-band Survey
- 3. Comparisons with JWST, Euclid, and WFIRST

I.What will we know with WISH-UDS?

z=9,12,15 E(B-V)=0.1

- Continuous Sampling for z>8
- Determine UV Slope

Completeness Estimates

* Redshift distribution of objects depends on LF evolution

What will we know with WISH-UDS?

- Evolution of UV luminosity function at 8<z<15
 - Number density of luminous LBGs
 - Ionization photon budget
- UV slope of LBG candidates
- Large-scale distribution of LBG candidates
 - $\Delta z \sim 3$ for each dropout populations

Faint-End Slope of UVLF

- Number density of faint galaxies has critical importance in Ionization Photon Budget.
- Some numerical simulations return steep UV slope at z>6 (Jaacks et al. MNRAS 420, 1606)
- Very deep observations are required.

Is WISH UDS (28AB) Deep Enough?

WISH Survey Plan

	Depth [AB mag.]	Area [sq. deg]	Days
Ultra Deep Survey	28.0	100	I,500
Ultra Wide Survey	25.0	I,000	50-100
Extreme Survey	~29.5	~	<100

Assumption on Evolution of Luminosity Function(I) Empirical Evolution

Assumption on Evolution of Luminosity Function(2) Semi-Analytic Model by Kobayashi et al.

Expected Numbers with WISH Ultra-deep Survey

- 100 sq. deg survey with 5 filters from 1.0 μ m to 3.0 μ m
 - Limiting magnitudes 28AB (point source, 3σ)
 - Total 1,500 days

N/deg ²	z=8-9	z=10-12	z=13-17
Empirical Ev.	1690	104	0.72
SAM	631	49.7	I.07
DMH	852	4.12	0.003

WISH Can Determine How Bright-End of UVLF Evolves at z>8

z=8 Observations vs. Assumed Model

z=9 Observations vs. Assumed Model

Comparison with Recent Observations using HST

Solid lines: 'Empirical' evolution assumed for WISH-UDS

UV Luminosity Density (SFR Density)

Steep UV Slope - Extreme Stellar Populations?

• Bouwens et al. 2010, ApJ 708, L69; ApJ 709, L133; Finkelstein arXiv:1110.3785

But β can be <-2 without extremely metal poor stellar populations

(Schaerer and de Barros 2010, A&A 515, A73)

McLure et al. 2011 MNRAS 418, 2074

- McLure et al. 2011, MNRAS 418, 2074:
 - HUDF + ERS 6.0 < phot-z < 8.7
 - 70 objects
 - UV Slope β Mean: -2.05 $\leftrightarrow \beta$ < -2.5 (Bouwens et al. 2010, Labbe et al. 2010)

Redshift z

WISH UDS for Exploration of Epoch of Reionization

- Discovery of Bright LBGs at 8 < z < 15
 - Feed Spectroscopy Targets to ELTs
- Bright-End of UV Luminosity Function
 - We would need to quantify how it is critically important to constrain the bright-end of UVLF at z>8
- UV Slope of Bright LBGs
 - Constraint on stellar populations

2. Narrow-band Filter Search for LAEs

Summary of Limiting Magnitudes and Expected Number of Detections for <u>WISH</u>

Limits are for 3σ

		R=	R=50		R=100	
redshift	Exp Time	Lim Mag.	N/deg ²	Lim Mag.	N/deg ²	
0	I0h	26.0	52.9	25.3	9.1	
Z=8	50h	26.9	91.3	26.2	71.1	
z=10	I0h	26. I	9.3	25.4	0.96	
	50h	27.0	18.8	26.3	9.7	
z=12	I0h	26.0	2.40E-02	25.3	2.20E-02	
	50h	26.9	0.40	26.2	0.42	

WISH Can Detect Large Sample of LAEs at z=8-10

Cross-Correlation of Galaxies and IGM 21cm Emission

Cross-Correlation of HI 21cm Emission and Galaxies

- Wyithe and Loeb 2007, MNRAS 375, 1034; Furlanetto and Lidz 2008, ApJ 660, 1030
- Advantage of Galaxy 21 cm line cross correlation over 21 cm signal alone:

Resolving History of Reionization

- Beginning: galaxy and 21 cm are positively correlated
- Galaxies ionize overdense regions.
 Underdense regions remain neutral -Brief period of low amplitude crosscorrelation (Xi=0.15 in the left model)
- Galaxy and 21 cm quickly become anticorrelated

Lidz et al. 2009, ApJ 690, 252

Requirements on the Galaxy Survey

- Accurate redshifts
 - LAE survey would be good
- Large area coverage
 - to improve S/N
 - >100 deg² survey area, coordinated with 21cm line obs.

Furlanetto and Lidz 2008

3. Comparisons with JWST etc.

JWST NIRCam

- Two Channels, both 2.2' x 4.4'
 - Short: 0.5 2.3 μm, 32 mas (8 H2RGs)
 - Long: 2.5 5.0 µm, 64 mas (2 H2RGs)
- Coronagraphic High Contrast Imaging
- Slitless Grism Spectroscopy R~1800

NIRCam Filters

JWST / NIRCam Expected Surveys

- Assume operation similar to HST
- Mirror size: x 2.6, Field of View: x 2.0
- HST WFC3/IR Deep Surveys: ~300 arcmin² in a few years
- NIRCam Surveys with Depth Similar to Current WFC3/IR Surveys (~29 AB mag.)
- $\rightarrow \sim 1 \text{ deg}^2$ in a few years. Several deg² in 5-10 years.

Number Density of z=12 Galaxies

improving the detection limit with ELTs for extended sources

WISH and JWST for Exploration of EoR

• WISH:

- Discovery of Bright LBGs at 8 < z < 15
 - Feed Spectroscopy Targets to ELTs
- Bright-End of UV Luminosity Function
- UV Slope of Bright LBGs
- LAEs at z=8 and 10
 - Feed to ELTs
 - Cross-correlation with HI 21cm Line Surveys?
- JWST:
 - Determination of Faint-End of UV Luminosity Function
 - Contribution of Faint Galaxies to the Cosmic Reionization
 - Discovery of Galaxies at z>8 (up to z~20?)
 - Spectroscopy with NIRSpec
 - Limited Survey Area

Euclid, WFIRST, and WISH

	Euclid	WFIRST	WISH
Mirror	I.2m	I.3m?	I.5m
FoV	0.5 deg ²	0.3deg ² ?	0.23deg ²
Visual Imager	RIz	Ļ	
NIR Imager	YJН	0.6-2.0µm	0.9-5.0µm
Lim. Mag.	24AB	25.9AB	28AB
Survey Area	20,000 deg ²	>11,000 deg ²	100 deg ²
Primary Science	Dark Energy	DE, Exoplanet, QSO	First Galaxies

Summary

- I. What will we know with WISH Ultra-Deep Survey?
 - Evolution of UVLF
 - UV slope
 - Re-check depth and area
- 2. Narrow-band Survey
 - Cross-correlation with HI 21cm?
- 3. Comparisons with JWST, Euclid, and WFIRST
 - Complimentary to JWST
 - Unique λ , depth + area against Euclid and WFIRST

Backup Slides

NBF Set 01

NBF Set 01 (R~70)

Name	λς	Z	FWHM	R
0100_00	I.095	8.0	0.015	73.0
0100_01	I.340	10.0	0.019	70.5
0100_02	I.580	12.0	0.022	71.8
0100_03	1.945	15.0	0.027	72.0
0100_04	2.188	17.0	0.031	70.6
0100_05	4.4052	5.71*	0.063	69.9
0100_06	4.9720	6.58*	0.071	70.0

 \ast redshift for $H\alpha$

NBF Set 01, Limiting Mag.

 $R\sim70$, Zodiacal Light = 3x Ecliptic Pole

Point Source, 10^4 sec

0.5'' Extended Source, 10^4 sec

Comparison: Imaging

	Subaru MOIRCS	Subaru GLAO	TMT IRIS	HST WFC3/IR	JWST NIRCam
Mirror Size	8.2m	8.2m	30m	2.4m	6.5m
Wavelength	0.9-2.5µm	0.9-2.5µm	0.84-2.4µm	0.9-1.7µm	0.9-2.3μm / 2.4-5.0μm
Spatial Sampling	0.117''/pix 0.4''@2µm	~0.1''/pix 0.2''@2µm	4 mas I0mas@Iµm	0.13''/pix FWHM~ 0.25''	32 mas / 64 mas
FoV	28 □'	~I20 □'	0.075 ¤'	4.65 □'	9.7 □'

Comparison: Spectroscopy

	Subaru MOIRCS	Subaru GLAO	TMT IRIS	HST WFC3/IR	JWST NIRSpec
Wavelength	0.9-2.5µm	0.9-2.5µm	0.84-2.4µm	0.9-1.7µm	0.6-5µm
Spatial Sampling	0.117''/pix 0.4''@2µm	~0.1''/pix 0.2''@2µm	4 - 50 mas	0.13''/pix FWHM~ 0.25''	0.2"x0.45"
FoV	~25 □'	~120 □'	0.2-10 <u>□"</u>	4.65 □'	I 2.24 □'(MSA) 3"x3"(IFS)
Spectroscopic Capability	Single-Slit MOS IFS	Multi-IFS	IFS	Slitless	Slits Microshutters IFS
Spectral Resolution	600-3000	-3000?	4000-10000	TBW	100, 1000, 2700