"Galaxies in a Modestly Very Early Universe" Hyper Suprime-Cam and WISH

1. HSC

- 2. HSC Strategic Survey
- 3. Hope on WISH

Kazuhiro Shimasaku (Univ of Tokyo)

# Hyper Suprime-Cam

## Characteristics







(PI=S. Miyazaki)

#### Status and Schedule

2012 Aug: Engineering First Light2013 Jan: First Light for all 116 CCDs2014: Open to common use

Last February's test observation





http://anela.mtk.nao.ac.jp/hscblog/builder/

# HSC Strategic Survey

A Subaru Strategic Survey Proposal Wide-field Imaging with Hyper Suprime-Cam: Cosmology and Galaxy Evolution

Satoshi Miyazaki et al. (over 100 people incl. Princeton and Taiwan)

> Requesting 300 nights over 5 years Submitted last October Currently under refereeing Will start early next year

White Paper: http://hscsurvey.pbworks.com/w/page/60427271/HSCWhitePaper

### Three Layers



#### Survey Fields





|                      |               |               | -             |               |
|----------------------|---------------|---------------|---------------|---------------|
| narrow-band          | NB387         | $NB816^{a}$   | $NB921^{a}$   | $NB101^{a}$   |
| redshift             | $2.18\pm0.02$ | $5.71\pm0.05$ | $6.57\pm0.05$ | $7.30\pm0.04$ |
| $N_{\rm UD}^b$       | -             | 3.9k (60)     | 1.7k (30)     | 39 (0)        |
| $N_{\rm D}^b$        | 9.0k (730)    | 14k (360)     | 5.5k (100)    | _             |
| $V_{\rm UD}^c$       | -             | 1.2           | 1.2           | 0.79          |
| $V_{ m D}^c$         | 6.0           | 9.6           | 9.8           | _             |
| $L(Ly\alpha)^d_{UD}$ | -             | 1.5           | 2.5           | 6.8           |
| $L(Ly\alpha)_D^d$    | 2.7           | 2.9           | 4.1           | _             |
| science <sup>e</sup> | LA            | LA, CR        | LA, CR        | LA, CR        |
|                      |               |               |               |               |

LAEs

6000 LAEs in UD 30000 LAEs in D

LBGs

| sample              | $BX/BM^{a}$ | u-drop <sup>a</sup> | g-drop      | r-drop      | <i>i</i> -drop | z-drop      | y-drop <sup>b</sup> | -       |      |     |     |
|---------------------|-------------|---------------------|-------------|-------------|----------------|-------------|---------------------|---------|------|-----|-----|
| redshift            | $2.3\pm0.5$ | $3.0\pm0.5$         | $3.8\pm0.5$ | $5.0\pm0.5$ | $5.9\pm0.5$    | $6.8\pm0.5$ | $7.8\pm0.3$         | 1 AM    |      | :   | חוו |
| $N_{\rm UD}^c$      | 0.9M        | 0.22M               | 0.24M       | 50k         | 11k            | 700         | 2                   | 1.41    | LDUS | IN  | Uυ  |
| $N_{\rm D}^c$       | 0.8M        | 98k                 | 1.1M        | 0.2M        | 34k            | 99          | 0                   | 2.2M    | LBGs | in  | D   |
| $N_{ m W}^c$        | -           | -                   | 17M         | 1.9M        | 38k            | 4           | -                   | 10M     |      | in  | w   |
| $V_{\mathrm{UD}}^d$ | 16          | 16                  | 15          | 14          | 12             | 11          | 2.6                 | - I SIN | LDUS | 111 | VV  |
| $V_{ m D}^d$        | 129         | 129                 | 122         | 108         | 98             | 89          | <b>24</b>           |         |      |     |     |
| $V_{ m W}^d$        | -           | -                   | 6100        | 5400        | 4900           | 4450        | -                   |         |      |     |     |
| $M^e_{ m UD}$       | -18.0/-17.0 | -18.3               | -18.2       | -19.0       | -19.9          | -20.6       | -21.6               | -       |      |     |     |
| $M^e_{ m D}$        | -19.5       | -20.8               | -18.8       | -19.6       | -20.4          | -21.6       | -24.1               |         |      |     |     |
| $M_{ m W}^e$        | -           | _                   | -19.8       | -20.6       | -21.6          | -22.5       | -                   | _       |      |     |     |
| $science^{f}$       | GE          | GE                  | GE          | GE          | GE             | GE, CR      | CR                  | -       |      |     |     |
|                     |             |                     |             |             |                |             |                     |         |      |     |     |

### High-z Science: Galaxies in Dark Haloes

Tie galaxy properties to their hosting halo masses to physically understand galaxy evolution

- galaxy properties from multiwavelength data
- halo masses from clustering



### High-z Science: Cosmic Reionization

Cosmic reionization occurred somewhere from  $z^{10}$  to  $z^{6}$ Constrain hydrogen neutral fraction xHI at z~7 using LAEs z=6.6: Estimate xHI independently from LF(Lya) and clustering Map out ionizing topology using Deep-layer 27deg<sup>2</sup> sample z=7.3: First meaningful constraint for z>7Constrain ionizing photon number density with LBG samples  $_{\rm LF\,(Ly\,\alpha)}^{\rm Corr\ Fn}$ Mpc  $h_{70}^{-1}$  $10^{-2}$ **UltraDeep** Deep 1.010 Illustration of Хн  $n[(\Delta \log L=1)^{-1} M pc^{-3}]$ Model predictions Inhomogeneous Open symbols: 10 for different xHI reionization 0.5 $10^{-3}$ existing data 1.0  $\omega(\theta)$  $10^{-4}$ Ultrapeep 0.1 0.01 existing data  $10^{-5}$ ~100Mpc 42.0 42.543.043.5100 1000 10 $\log L(Ly\alpha)$  [ergs s<sup>-1</sup>]  $\theta$  (arcsec)  $LF(Ly\alpha)$  will decrease with A distinct pattern will appear in increasing xHI ACF 12 due to inhomogeneous reionization

## WISH Survey Plan

|                            |                     |                       |                            | HSC                                      |     |
|----------------------------|---------------------|-----------------------|----------------------------|------------------------------------------|-----|
|                            | Depth (3 $\sigma$ ) | Area                  | Example of the Filters     | 1100                                     |     |
|                            | (AB mag)            |                       | (a plan, to be determined) |                                          |     |
| Ultra Deep Survey<br>(UDS) | 28                  | 100 deg <sup>2</sup>  | 1.0,1.4,1.8, 2.3, 3.0 μm   |                                          | 5   |
| Multi-Band Survey<br>(MDS) | 28                  | 10 deg <sup>2</sup>   | 4.0                        | Wide<br>1400deg <sup>2</sup> , 26r       | mag |
| Ultra Wide Survey<br>(UWS) | 24-25               | 1000 deg <sup>2</sup> | 1.4, 1.8, 2.3, (3.0, 4.0)  |                                          |     |
| Extreme Survey             | 29-30               | 0.25 deg <sup>2</sup> | 1.0, 1.4, 1.8, (3.0, 4.0)  | $\leftarrow$ 3. 5deg <sup>2</sup> , 28ma | ag  |

#### Hope on WISH

- Launched successfully
- Observe HSC Survey fields
  - stellar populations
  - go beyond z  $\stackrel{\sim}{}$  8
- Add narrow-band filters

## Filters and Depths

| Layer | Filter | Exp. <sup>a</sup>              | Total <sup>b</sup> | Lim. mag. <sup>c</sup> | Moon <sup>d</sup> | Requirement(s) <sup>e</sup> | Main scientific driver(s) <sup>f</sup>                        |
|-------|--------|--------------------------------|--------------------|------------------------|-------------------|-----------------------------|---------------------------------------------------------------|
|       |        | (# of epochs)                  | nights             | $(5\sigma, 2'')$       | phase             |                             |                                                               |
| Wide  | g, r   | 10 min (3)                     | 53                 | 26.5, 26.1             | d                 | photo                       | photo-z, $z \lesssim 2$ gals, QSO                             |
| Wide  | i      | 20 min (6)                     | 53                 | 25.9                   | d                 | $FWHM \lesssim 0.7''$       | WL, $z \lesssim 2$ gals, QSO                                  |
| Wide  | z, y   | 20 min (6)                     | 108                | 25.1, 24.4             | g                 | photo                       | photo-z, clusters,                                            |
|       |        |                                |                    |                        |                   |                             | $z \sim 1$ gals, $z \sim 6-7$ QSO                             |
| Deep  | g,r    | 1.4 hrs (10)                   | 7.3                | 27.5, 27.1             | d                 | cadence                     | SNeIa                                                         |
| Deep  | i      | 2.1 hrs (10)                   | 5.4                | 26.8                   | d                 | FWHM $\lesssim 0.7''$ ,     | WL calibration, SNeIa                                         |
|       |        |                                |                    |                        |                   | cadence                     |                                                               |
| Deep  | z      | 3.5 hrs (10)                   | 9.1                | 26.3                   | g                 | cadence                     | $z \lesssim 2$ gals,                                          |
|       |        |                                |                    |                        |                   |                             | ionization topology, SNeIa, QSO                               |
| Deep  | y      | 2.1 hrs (10)                   | 5.4                | 25.3                   | g                 | cadence                     | $z \lesssim 2$ gals, SNeIa, QSO                               |
| Deep  | N387   | 1.4 hrs (≃10)                  | 3.6                | 24.5                   | d                 | photo                       | $z \simeq 2.2$ LAEs & LABs                                    |
| Deep  | N816   | 2.8 hrs ( $\simeq 10$ )        | 7.2                | 25.8                   | g/d               | photo                       | ionization topology, $z \simeq 5.7$ LAEs & LABs               |
| Deep  | N921   | 4.2 hrs ( $\simeq 10$ )        | 11                 | 25.6                   | g/d               | photo                       | ionization topology, $z \simeq 6.6$ LAEs & LABs               |
| UD    | g,r    | 7 hrs (20)                     | 4.8                | 28.1, 27.7             | d                 | cadence                     | $z\gtrsim 2$ gals, SNeIa                                      |
| UD    | i      | 14 hrs (20)                    | 4.8                | 27.4                   | d                 | cadence                     | $z \gtrsim 2$ gals, SNeIa, QSO                                |
| UD    | z, y   | 18.9 hrs (20)                  | 13                 | 26.8, 26.3             | g                 | cadence                     | $z \gtrsim 2$ gals, SNeIa, QSO                                |
| UD    | N816   | $10.5 \text{ hrs} (\simeq 10)$ | 3.6                | 26.5                   | g/d               | photo                       | $x_{\rm HI}(5.7), z \simeq 5.7$ LAEs & LABs                   |
| UD    | N921   | 14 hrs (≃ 10)                  | 4.8                | 26.2                   | g/d               | photo                       | $x_{\rm HI}(6.6), z \simeq 6.6 \text{ LAEs } \& \text{ LABs}$ |
| UD    | N101   | $17.5 \text{ hrs} (\simeq 10)$ | 6.1                | 24.8                   | g/d               | photo                       | $x_{\rm HI}(7.3), z \simeq 7.3 \text{ LAEs}$                  |
|       | -> ->  | -                              |                    |                        |                   |                             |                                                               |
|       |        |                                |                    |                        |                   |                             |                                                               |