The First Galaxies Frontier

Hubble's BoRG survey and a Mission for the future

Michele Trenti

Kavli Institute Fellow

→ The University of Melbourne

WFC3: Exploring the first 700Myr

★New discovery space for galaxies at z>7

Exciting results from Hubble legacy fields

[Talk by Rychard earlier today]

★ Legacy fields challenges:

★ (Ultra)Deep, small area: Mostly faint galaxies (L<L*)</p>

★ Few lines of sight: Results affected by galaxy clustering

The Brightest of Reionizing Galaxies Survey <2014

- Primary goal: photometric identification of rare galaxies at z~8 (~650Myr after Big Bang)
- 74 WFC3 independent pointings ~350 arcmin², >400 orbits (PI Trenti, Cycles 17+19+20)
- 4 filters (optical+near-IR):
 V, Y, J, H
- 4-6 hours/field:
 5σ sensitivity: m_{lim}~27

BoRG compared to legacy fields

Largest area available to find z~8 galaxies

Some z~8 galaxies from BoRG

★ BoRG finds most luminous z~8 galaxies (~650 Myr after Big Bang):

n=10 at S/N>8 (m<26.5)

Best BoRG source: m_j=25.9 (S/N>20)

• n=28 at S/N>5 (m~27)

Michele Trenti

5

First Galaxies

WFC3

BORG

Some z~8 galaxies from BoRG

.

WFC3 BoRG

The luminosity function at z~8

Large area (~350 arcmin²) determination

★ BoRG+HUDF/ERS: $\phi(L) = \phi_0 (L/L_*)^\alpha \exp\left(-L/L_*\right)$ 97 Y-dropout galaxies 10^{-2} ★ None known preWFC3! 10^{-3} \star LF well described by galaxies/mag/Mpc³ z~6 LF HUDF+ERS z~8 10^{-4} Schechter form (ultradeep) 10^{-5} BoRG z~8 **★** Less sources at high-z: (large area) Galaxy density 10^{-6} evolution from z~6 -22-21-20-19to z~8 at 99.995% MAB UV **Bright** confidence Bradley, Trenti et al. (2012); Schmidt et al. (2014)

Faint

WFC3 BoRG

-18

Very steep z~8 luminosity function

- Best fit gives $\alpha = -1.98 \pm 0.2$ (log divergent!)
- Steepening of the LF at z>7:
 Abundance of faint reionizing sources

Luminosity function extrapolation

- ★ How to characterize luminosity density of faint ionizing sources?
 - ★ Modeling (Trenti et al. 2010, Tacchella, Trenti & Carollo 2013)
 - ★ Indirect tracers: GRBs (Trenti et al. 2012b,2013, 2014)
 - ★ Gravitational telescopes: Frontier Fields Initiative (Hakim Atek & Masami Ouchi talks next)

Luminosity density and reionization

Trenti et al. (2012b)

High-z galaxies: Extending the frontier ★ WFC3/HST: Galaxies found at z~7-10 (2010-2013) **★**Next step: Characterize their properties * Brightest z>8 galaxies: rare but ideal targets m=25.9 ★ Easiest to follow-up! F160W ★ Earlier assembly expected: z>13 [~300 Myr!!] **Probes of earliest star** formation and reionization

10

Galaxy properties: Lyα emission ★ BoRG follow-up: Keck (~32h) & VLT (~12h)

- 15 galaxies observed,
 no Lyα emission detected
 (EW>25A)
 - Dramatic evolution of intergalactic medium from z~8 to z~6:
 Reionization in progress
 - ★ BoRG z~8 limits crucial to establish trend previously hinted by z~7 spectroscopy

Probability of $Ly\alpha$ emission

Galaxy properties: Clustering

Clustering analysis constraints the dark matter halo masses of galaxies

- ★ First measure of clustering at z>7!
- ★ Derived DM halos ~10¹¹M_{sun}
 - ★ Galaxies at z>7 expected in more abundant halos with 10⁸-10¹⁰ Msun!

Bias: galaxies vs. DM halos

Outlook for the future

Hubble Space Telescope

★HST is photon and wavelength limited to z~10 but key facility for short-term progress:

- * "Frontier Fields" [public survey] is using gravitational lenses to identify intrinsically fainter sources
- ★ GLASS survey [Treu PI, Trenti Col] will provide spectra of faint z≤8 sources (synergic with BoRG)

★ BoRG-like survey targeted at z~9-10 to find rare bright catches (easiest to follow-up)

The future at z~9-10

Bright Galaxies at Hubble's Detection Frontier (PI Trenti)

- ★ Largest Cycle 22 HST program (32 days!)
 - ★ Wide area, near-IR: 550 arcmin²; 120 sight-lines
 - * ~20 galaxies at z~9-10; ~200 at z~7-8; [m_{AB}<27]</p>

Aim: Investigate star formation in rare, massive halos (n~10⁻⁶ Mpc³)

15

Beyond Hubble: JWST (2018)

★James Webb next giant leap

- Better sensitivity, resolution, IR coverage
- Detection of first generation of galaxies out to ~300 million years after Big Bang (z~15)
- Parallels have ground-breaking potential (1h reaches m_{AB}=29 with S/N=5 at 2µm)

Hubble H band

First Galaxies

image simulation by M. Stiavelli, STScI

16

es for the future

★WISH mission concept is amazing for truly wide area search of first galaxies

★Some exciting science on galaxies **before reionization:**

- Large Scale Structure
- Efficiency of metal enrichment
- Detection of Population III supernovae?

es for the future

★Rapid redshift evolution of the luminosity density

- Early structure formation shifts toward smaller scales
 - Bright galaxies rarer
- Large area of WISH critically needed for detection out to z~15

Star formation rate predictions

Trenti et al. (2013), Tacchella, Trenti & Carollo (2013)

Large Scale Structure

★ Puzzling result: No excess of LBGs around SDSS QSOs at z~6 defying DM modeling expectations [Kim et al. 2009]

Cluster region

25 Mpc

z = 8.01 z = 8.01

Average Region

Trenti et al. (2012)

★ What is DM halo - light connection for rare objects?
 ★ How do SMBHs and galaxy clusters grow?
 ★ WISH uniquely suited to investigate earliest assembly!
 Michele Trenti
 19

Metal Enrichment

★ Metals in & around high-z galaxies: How much and how far?

★ Metal pollution in biased regions starts early: At z>40 from PopIII (metal-free) stars (Trenti & Stiavelli 2007)

★ Stellar Populations of rare, bright galaxies at z>10-15 ideal probes of PopIII to PopII transition

 \star WISH can detect best sources for spectroscopic follow-up

PopIII supernovae?

★Non-homogenous chemical **enrichment implies PopIII** supernovae at z<10</pre> \star Rate ~ 10⁻² deg²/yr **★**Slowly varying sources (year timescale) **★WISH has potential to find**

evidence of PISNe from PopIII stars! PopIII Supernova Rate [Observer Frame]

Trenti et al. (2009)

21

Summary

Hubble's WFC3/IR transformed our view of galaxy evolution in the first 700 Myr

- BoRG parallel imaging, and our spectroscopic followup, is playing a key role in this revolution
- BoRG[z9-10] survey will explore a new discovery space at $z \sim 9-10$ in the short term
- Combination of WISH+JWST is an amazing opportunity for unprecedented wide&deep observations in the infrared!

Star formation beacons

- ★ Gamma Ray Bursts [~10⁵² ergs s⁻¹] emitted by dying massive stars rare but detectable at all redshifts
 - ★ Pinpoint sky locations with star formation (from bright optical/IR afterglow)
- ★ Follow-up to probe host galaxy
 - ★ Upper limits only from HST ultra-deep data on 6 GRBs at z>5
 - ★ Galaxy LF extends to 10x fainter than observed

(Trenti et al. 2012b, 2013, Tanvir et al. 2012)

Legacy Value

Brightest of Reionizing Galaxies (BoRG)

RUR

First Galaxies

- IR-data from space have clear legacy value
- ★ 350 arcmin² of medium-depth near-IR data released through Hubble's archive
 - ★ Core Science:
 - ★ BoRG key dataset for bright-end of z~8 galaxy luminosity: Used by several independent teams (Yan et al. 2011, McLure et al. 2013, Bouwens et al. 2014)

★ Legacy Science:

★ Milky Way Galactic Structure (Ryan et al. 2011, Holwerda et al. 2014)